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A Characterization of Associativity

Arthur Charlesworth

University of Richmond and University of Virginia

ABSTRACT: A necessary and sufficient condition for the associativity of a

function is given, in terms of a particular relation being a function. The con-

cept of an associative function is generalized to the concept of a function being

associative relative to a sequence and a characterization of such relative asso-

ciativity is also given. These two characterizations are applied to the problem

of proving the associativity, or relative associativity, of a function.

Categories and Subject Descriptors: D.I.3 [Programming Techniques]: Con-

current Programming; D.3.3 [Programming Languages]: Language Constructs

General Terms: Languages

Additional Key Words and Phrases: associativity, reduction, parallel program-

ming.
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1 INTRODUCTION

Among the most efficiently implementable operations involving the participa-

tion of multiple processes are the associative operations. Partial computations

of associative operations can be combined using a variety of efficient techniques,

such as read/modify/write on shared memory machines, processor trees on dis-
tributed memory hypercubes, and shifts or pointer doubling on Single Instruc-

tion Multiple Data parallel computers. For this reason, support for computing
reductions of finite sequences using standard associative functions, such as +,

*, and, or, max, and rain, is commonly provided within languages for parallel

computing. 1
Support for using less trivial programmer-defined associative functions is

provided by a general reduction operator. Given that a function f is known to

be associative, a general reduction operator g obtains the reduction "R(f, s) of

a finite sequence s using the function f. Such a general reduction operator is

provided in several languages for parallel computing, such as iPSC/2 Fortran

and C lint89] and the innovative and less conventional languages Connection

Machine Lisp [HS86] and Paralation Lisp [Sab88]. Since g need apply f only

to the sequence s, it is not necessary that f be associative, only that f satisfy

an associativity property relative to the sequence s. The concept of associa-

tivity relative to a sequence is defined and studied in this paper. This concept

extends the applicability of 7_; e.g., there exists a nonassociative function that
is associative relative to any nondecreasing sequence of records.

It is not always easy to prove the associativity of a function f, defined by a

function program written in a programming language. To illustrate this, notice
that since the defining equation f(z, f(y,z)) = f(f(z,y),z) for associativity

involves 4 applications of f, a straightforward proof of the associativity of f

using such a proof of correctness involves the consideration of p4 cases, where

p is the number of cases used in proving the correctness of a single application
of f. A similar observation can be made about proving relative associativity.

Although ad-hoc arguments based on special properties of f can reduce the

number of cases significantly, the effort required to reduce the number of cases
can increase the difficulty of the associativity proof. The main results of this

paper are characterization theorems for associativity and relative associativity,

which provide an alternative approach to proving associativity that requires the
consideration of no more than p cases.

1Language support for reductions was provided much earlier by APL [Ive62].
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2 ASSOCIATIVITY RELATIVE TO A SEQUENCE

Before presenting a mathematical characterization of associativity it is neces-

sary to provide preliminary definitions and results related to associativity and
reductions. Throughout this paper the notation < 81,...,sn > denotes a se-

quence s of n elements and o denotes string concatenation. By a "slice" of a

sequence we shall mean a sequence of consecutive terms of the given sequence.

We begin by defining the concept of associativity relative to a sequence. In-

tuitively, a function is associative relative to a sequence if the defining equation

for associativity f(z, f(y, z)) =/(y(x, St),z) is satisfied whenever z, y, and z

result from applying f zero or more times, grouping from the right, to three

adjacent nonnull finite slices of the given sequence. To facilitate a more precise
definition of relaiive associativity, we definethe f-reduction of a sequence, even

if the function f fails to be associative.

DEFINITION 1. Let s be a finite sequence of elements of E and let f be a

function from E x E to E. The f-reduction of the sequence < z > oN, denoted

f,(< x > oN), is defined to equal z if s is the null string and to equal f(z, fr(s))
otherwise.

DEFINITION 2. Let s be a sequence of elements of E and let f be a func-

tion from E × E to E. To say that f is associative relative to s means that

f(f,.(s_), f(fr(s2), fr(s3))) = f(f(fr(sl), fr(s2)), fr(s3)) holds for any nonnull

finite sequences si, s2, and s3 such that si o s_ o ss is a slice of s.

Notation for slices of a sequence is used far more often than notation for

terms of a sequence in this paper. Thus for convenience the subscript notation

si, when used outside angle brackets, denotes a slice of s. When it is necessary
to denote a term of s outside angle brackets, a phrase such as "the i_h term of

s" will be used.

LEMMA 1. Let f be a function from E x E to E and let s be a sequence of
elements of E. lf f is associative relative to s, then f(z, f(y, z)) = f(f(z, y), z)

holds for each triple of consecutive terms z, y, and z of s.

PROOF. Let sl, s_, and sa be < z >, < y >, and < z >, respectively. Then

f(z,f(y,z)) = f(fr(< z >),f(fr(< Y >),fr(< z >)))

- f(f(fr(< z >),fr(< St >)),fr(< z >))

= f(f(z,y),z)

where the first and last equality follow from the definition of f, and the second

equality follows from the fact that ] is associative relative to s. []
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The followingexample shows that the converse of Lernma 1 does not hold

and thus the notion of relativeassociativitywould be weakened ifDefinition2

were phrased more directlyinterms ofthe definingequation forassociativity.

EXAMPLE 1. There is a [unction f from E × E to E and a sequence

s of elements of E such that f(z,f(y, z)) = f(f(z,y), z) for each triple of

consecutive terms z, y, and z of s, yet f fails to be associative relative to s.

For let E ={1,2,3,4}, let s be the sequence < 1,2,3,4 >, and letf be any

functionfrom E x E to E such that

f(1,4) = f(2,3)=f(2,4)=I

f(1,1) = f(3,3)=2

f(1,2) = 3

I(3,4) = 4

Then

f(i,f(2,3)) = 1(f(1,2),3)

sinceboth sidesevaluateto 2,and

f(2,/(3,4)) = f(1(2,3),4)

sinceboth sidesevaluateto 1. However f isnot associativerelativeto s since,

ifsl =< 1,2 >, s_ =< 3 >, and sa =< 4 >, then

f(fr(sl), f(fr(S2), fr(s3))) -- f(f(1, 2),/(3,4))

= 1(3,4)

= 4

whereas

f(f(fr(sx), [r(s_)), fr (s3)) = f(f(f(1,2),3),4)

= f(f(3,3),4)

= f(2,4)

= 1.1"1

The definitionof associativityrelativeto a sequence isbased on the arbi-

trarychoiceof definingfr so that grouping isfrom the right.The next result

demonstrates that,in fact,the choiceofgrouping does not matter. To simplify

the statement ofthisresult,fora function f from E x E to E and a sequence s

ofn elements of E, we use the phrase "reductof s with respectto f' to mean

any element of E that can be obtained by applying f a totalof n - I times

m
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to the sequence, according to the ordering imposed by the sequence but with

no restriction on the grouping used. More precisely: for a sequence having a

single term, the term itself is a reduct of the sequence with respect to f; for
a sequence < z, y > of two terms, the element f(z, y) of E is a reduct of the

sequence with respect to f, and for any other sequence < z > oto < y >, the

elements f(a, y) and f(z, b) of E are reducts of the sequence with respect to f,
where a is a reduct of < z > ot with respect to f and b is a reduct of to < y >

with respect to f. There are no other reducts of a sequence with respect to f

beyond those just specified.

LEMMA2. Let f be a function from E x E toE and lets be a sequence

of elements of E. Then f is associative relative to s if and only if for any

nonnull finite sequences st, s2, and sz such that st o s2 o s3 is a slice of s,

I('_, I(_,'_))= I(Y('C,'_),'_), where for i= 1, 2, 3, _ denotes a reduct of si

with respect to f.

PROOF. Clearly f is associative relative to s if the stated condition holds,

since for any sequence u, fr(u) is easily seen to be a reduct of u. To see the

converse, assume that f is associative relative to s. It suffices to show that for

each slice t of s, fr(t) is equal to each reduct of twith respect to f, and this

can be proven by strong induction on the number of terms of t as follows. The

result clearly follows from the definition of fr if t has 1 or 2 terms, and the
result follows from Lemma 1 if t has 3 terms, so assume the result holds for

slices shorter than t, where t has more than 3 terms. Let z and y be the first

and last terms of t so that t =< z > ouo < y >, for some slice u of s of length

at least 2, say u =< z > or. Each reduct of t has either the form f(a, y) or the

form f(x, b), where a is a reduct of < z > ou with respect to f and b is a reduct
of uo < y > with respect to f. Now

f(x, b) - I(x, fr(uo < y >))

= fr(t)

by the induction hypothesis and the definition of fr, _d

f(a,y) -- f(fr(< z > ou),y)

= f(f(z,h(U)),y)

= ](f(h(< x >), h(u)), h(< y >))

= f(h(< z >),f(h(u),fr(< y >)))

= f(z,f(h(u),I,(< y >)))

• -_:_)(-z;I(iri<z > ov),:f_(< y >)))

= f(z,f(f(z,f_(v)),f_(< y >)))

= f(x,f(f(h(< z >),/,(v)),h(< y >)))

= f(x, f(/r(< z >),f(fr(v)' It(< Y >))))
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-- f(x, fCz, f(frCV), y)))

-- f(z, f(z,fr(vo < y >)))

= f(z,f, Cuo< y >))

-- fr(t)

where the first equality and third from last equality follow from the induction

hypothesis, the fourth and ninth equalities follow from the assumption that f is
associative relative to s, the sixth equality follows from the definition of v, and

the remaining equalities follow from the definition of f,.D

LEMMA 3. Let f be a function from E x E to E. The following statements

are equivalent:

1. f is associative.

2. f is associative relative to s, for each sequence s of elements of E.

3. f is associative relative to s, for each nonnull finite sequence s of elements

ofg.

PROOF. To see that (1) implies (2), let f be associative, let s be given, and

let sl, s_, and sa be nonnull finite sequences such that sl o sz o s3 is a slice of

s. By denoting the elements f,(sl), fr(s2), and fr(sa) of E by z, y, and z,

respectively, and by appTy[fig the defining equation for associativity, it is clear

that f is associative relative to s.
Since each nonnull finltesequen_e:]s-asequence, (2) implies (3).

To see that (3) implies (1), assume f is associative relative to s, for each

nonnull finite sequence s of elements of E, and let x, y, and z be any elements

of E. Since f is associative relative to the sequence < z, y, z >, it follows from

Lemma 1 that f(x, f(y, z)) = f(f(x, y), z). I:1

The following example illustrates the fact that there are naturally occurring

functions for which associativity relative to a sequence is more general than

associativity.

EXAMPLE 2. There ezists a nonassociative function that is associative

relative to any nondecreasing sequence of records. The maximal plateau problem

[Gri81] asks for the length of the longest plateau in a nondecreasing sequence u of

integers, where a plateau is a slice of the sequence all of whose values are equal•
The maximal plateau problem can be solved using a general reduction operator

as follows. Define a type PLATgAU__P¢- Consisting of records having integer

fields LE], FIRST_LE];, LAST_LEN, FIRST, and LAST, and define a sequence s of
such records such that the first three fields of each record of s have the value

1 and the remaining two fields of the izh term of s have the value of the i th
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term of u. The ordering on u imposes a corresponding ordering on s so that s

becomes a nondecreasing sequence of records. The length of the longest plateau

ofu can then be obtained by computing _(f, s), where _ is a general reduction

operator and f is the function given in Figure 1. The intent of the programmer

is that the following specification be satisfied, when f is applied to a nonnull

slice t =< ti,...,tj > of s, and where ut denotes < ui,...,uj >: ANS.LEi
is the length of the longest plateau in ut, where ut is in nondecreasing order,

A$$. FIgST_LEll is the length of the longest plateau in ut that starts at the first

component of ut, ANS. IAST_LEli is the length of the longest plateau in ut that
ends at the last component of ut, IJiS .FIRST is the value of the first component

of u_, and ANS. LAST is the value of the last component of ut.
To see the nonassociativity of f, let X and y be records of type PLATEAUTYPE

such that

X.LEN = 1 Y.LEN = 1

X.FIRST_LF_ ,, 1 Y.FIRST_LEN - 1
X.LIST_LEN ,, 1 Y.LAST_LEH = 1
I.FIRST ,,. 10 Y.FIRST ,,, 20
I.LAST ,,. 10 Y.LAST ,,, 20

Then f(X, f(Y,Z)) differs from f(f(X,Y), Z), where Z has the same value as

X, since

f(x, f(Y,X)).LEN = I f(f(X,Y), X).LEN - X

f(X, f(Y,X)).FIILST_LF__= 1 f(f(g,Y), I).FIRST_LEN- 2

f(X, f(Y,X)).LAST_LEN - 2 f(f(l,Y), I).LAST_LF_ = 1
f(X, f(Y,X)).FIIqST - I0 f(f(X,Y), X).FIII.ST - I0
f(X, f(Y,X)).LAST - IO f(f(X,Y), X).LAST = IO

For an example in which the lack of associativity of f causes two different
values to be computed for the field LEN, note that

f(x, :_(x, f(Y,X)).LEW = 2

whereas

f(X, f(f(X,Y), X)).LEN = 3.

A proof of the relative associativity of f appears in Section 4.1.1:]

The function in Example 2 is also associative relative to the sequence nat-

urally corresponding to any nonincreasing sequence and, more generally, any

sequenceinwhich each subsequenc e consisting of equal component values is a
slice. (This is consistent with an observation in [Gri81] concerning a program

to solve the maximal plateau problem.)

Other applications of using general reduction operators that, like Example 2,

involve the use of records to collect information are discussed in [Chag0]. Among
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function f (L, R: in PLATEAU_TYPE) return PLATEAU_TYPE is

ANS: PLATEAU_TYPE;

function MAX (X, Y: in INTEGER) return INTEGER is

begin

if X > Y then

return X;

else

return Y;

end if ;

end MAX;

begin -- f
if L.LAST - R.FIRST then

ANS.LEN :-MAX (MAX (L.LEM, R_.LEN), L.IAST_LEN + R.FIRST_LEN);

else
ANS.LEN :-MAX (L.LEM, R.LEN);

end if ;

if L.FIRST = R.FIRST then

ANS.FIRST_LF_ :- L.LEN + R.FIRST_LEN;

else

ANS.FTRST_LEN := L.FIRST_LF_;

end if ;
if L.LAST - R.LAST then

ANS.LAST_LEN :- L.LAST_LEN + R. LEN;

else

ANS. LAST_LEN :- R. LAST_LEN ;

end if ;

ANS.FIRST :- L.FIRST;

ANS.LAST :- R.LAST;

return ANS;

end f;

Figure 1: A Function to Help Solve the Maximal Plateau Problem

m
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such applicationsare computing the number of peaks in a sequence of distinct

terms (a term of the sequence isa "peak" ifitisgreaterthan both itsprede-

cessorand successor),computing thenum_er of runs in a sequence,computing

the maximum sum among the nonempty slicesof a sequence, and computing

the index of the firstcomponent of a vectorwhose value satisfiesa particular

property,such as being maxima], minimal, nonzero, or positive;ifdesired,the

index of the lastsuch component could be found instead.

LEMMA 4. Let s and t be nonnull finite sequences of elements of a set E

and let f be associative relative to s o t. Then fr(s or) = f(lr(s),f_(t)).

PROOF. By induction on the lengthof s. Firstassume s has length 1,say

sis<z>. Then

yr(sot)= f_(< _ > or)
= f(x, fr(t))
= f(fr(s),fr(t)).

Now assume s has length greater than 1, say s =< z > ou, where u is nonnull

and has length less than that of s. Then

yr(sot) = /_((<• > ou)ot)
= y_(<_ > o(uot))

= f(x,fr(uot))

= f(x,f(fr(u), fr(t)))

= f(fr(< z >),f(fr(u), fr(t)))

= f(fr(< z > ou),fr(t))

-- f(fr(s),fr(t))

where the third and fifth equalities follow from the definition of fr, the fourth

follows from the induction hypothesis, and the sixth follows from Lemma 2.13
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3 CHARACTERIZATION THEOREMS

RELATIVE ASSOCIATIVITy CHARACTERIZATION THEOREM: Let u be

a nonnull finite sequence of elements of a set E, let f be a function from E x

E to E, let S be the set of slices of u, and let R denote the smallest subset of S
x E such that

(a) for each term z of u, R contains the pair (< z >,z) and

(b) for each s in S, R contains each pair (s, f(t', t")), where (s', t') and (s", t")
are in R and s is s _ concatenated with s".

Then the following statements are equivalent:

1. f is associative relative to u.

2. R is a function from S to E.

3. R is a function from S to E that maps each s in S to fr(s).

PROOF. First note that a smallest subset of S × E satisfying (a) and (b)

exists, since S x E itself satisfies (a) and (b) and the intersection of all subsets

of S × E that satisfy (a) and (b) satisfies (a) and (b) and obviously is included

in each subset of S x E satisfying (a) and (b).

Since (3) clearly implies (2), it suffices to show that (1) implies (3) and (2)

implies (1). To see that (1) implies (3), suppose f is associative relative to u.
We show that for all s in S, any element of R whose first coordinate is s has

second coordinate fr(s), by induction on the length of s. First assume s has

length 1, say s is < z >, and note that the only pair having first coordinate
< z > that needs to be in R for R to satisfy (a) and (b) is (< z >, x). Since R

is the smallest subset of S x E satisfying (a) and (b), it follows that the only

element of R whose first coordinate is <x > has second coordinate z, and thus

the result holds, since fi(s) equals _. Now assume s has length greater than

1. Since R is the smallest subset satisfying (a) and (b), the second coordinate

of any pair in R whose first coordinate is s can be denoted as f(F,t"), where

(s', t I) and (s", t") are in R and s is s' o s". Each of s' and s" is nonnull, since
each is in S, so it follows from s = s _o s" that each of s _ and s" has length less

than that of s. By the induction hypothesis, t' = fr(s') and t" = fr(s") so

f(t',tu) -" f(fr(S'),fr(sU))

= f,(s'os")
= fr(s)

where the second equality follows from Lemma 4, using the fact that f is asso-

ciative relative to u (and hence associative relative to s_ o s").
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To see that (2) implies (1), suppose R is a function from S to E, say fn. To
see that f is associative with respect to u, let sl, s2, and 8s be nonnull finite

sequences Such that sl o s2 o sa is a slice of u. Then

f(fr(Sl), f(fr(s2), fr(sa))) = f(fR(sl),f(fR(s2), fR(sa)))
-- f(fR(sl),fR(s20Sa))
= fR('l o (s2 o ,3))
= /R((sl 0 s2) o ,_)
= f(fR(Sl 0,2), fR(ss))
= /(f(fR(sl), fR(s2)),/R(s_))
= f(f(fr(sl),fr(s2)), fr(sa))

where the second, third, fifth, and sixth equalities follow from (b) and the

fourth follows fro m the associativity of string concatenation; this proof will
thus be complete when the first and last equalities have been justified. This is

accomplished by showing that, for each s in S, fR(s) = f_(s). We proceed by

induction on the length ofs. First assume s has length 1, say s is < z >. Then

..... ........... >)

= X

where the second equality follows from (a) and the third equality follows from
the definition of Yr. Now assume s has length greater than 1, say s =< z > or,

where t is nonnull and has length less than that of s. Then

= f(fR(< • >),fR(t))
= f(z, yR(t))

= y(z,y_(t)

-- fr(<X>°$)

= f_(s)

where the first and last equality follow from the structure of s, the second fol-

lows from (b), the third follows from (a), the fourth follows from the induction
hypothesis, and the fifth follows from the definition of f_. 1:3

When it is possible to prove that a function is in fact associative, rather
than just associative relative to a sequence, the following simpler theorem can
be used. For convenience, we denote the Relative Associativity Characterization

Theorem and the Associativity Characterization Theorem by RACT and ACT,
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respectively.

ASSOCIATIVITY CHARACTERIZATION THEOREM. Let S denote the

set of nonnuli finite sequences of elements of a set E, let f be a function from
E x E to E, and let R denote the smallest subset ors x E such that

(a) for each z in E, R contains the pair (< z >,z) and

(b) for each s in S, R contains each pair (s, f(t', t")), where (s', t') and (s", t")
are in R and s is s' concatenated with s".

Then the following statements are equivalent:

1. f is associative.

e. R is a function from S tO E.

3. R is a function from S to E that maps each s in S to f_(s).

PROOF. For each nonnull finite sequence u of elements of E, let P_ denote
the relation defined in the statement of RACT and let Su denote the set of

nonnull finite slices of u. Note that the S above is the union of all the Su.

That n smallest R exists follows from an argument similar to that in the first

paragraph of the proof of PACT.
To complete this proof, it suffices to show that the following statements are

equivalent:

1. f is associative.

2. f is associative relative to u, for each nonnull finite sequence u of E.

3. R_ is a function from Su to E, for each nonnull finite sequence u of E.

4. R_ is a function from Su to E that maps each s in S,, to f_(s), for each

nonnull finite sequence u of E.

5. R is a function from S to E.

6. R is a function from S to E that maps each s in S to f,(s)

By Lemma 3, (1) and (2) are equivalent. By RACT, (2), (3), and (4) are

equivalent. Clearly (6) implies (5). Thus it suffices to show that (5) implies (3)

and (4) implies (6), but both of these implications follow from the similarity of
the definitions of R and Ru. [In this proof, note the necessity of being able to

conclude that the values of Ru(s) and P_,(s) agree, whenever f is associative
relative to two nonnull finite sequences u and ut and the sequence s is in both

sets St, and St,,.] 1:3

11
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4 APPLYING THE CHARACTERIZATION

THEOREMS

Let f be a function defined by a subprogram written in a programming language.

As pointed out in Section 1, a straightforward proof of the associativity of f

based on the proof of correctness of the function subprogram and using the
definition of associativity involves the consideration of p4 cases, where p is the

number of cases in the proof of correctness of a single application of f.
The next result shows that using the characterization theorems, instead of

the definition of associativity, requires the consideration of no more than p cases.

PROPOSITION. Let E be a set, let f be a function from E x E to E, where

f is defined by a subprogram, and let p be the number of cases in a given proof

of correctness off.

(a) If the result of reducing an arbitrary finite nonnull sequence of E by f has
been specified and this specification is satisfied for each sequence consisting of

a single term, then a proof of the associativity of f based on the given proof of

correctness off requires the consideration of at most p cases.

(b) Let u be a finite sequence orE. If the result of reducing an arbitrary nonnull
slice of u by f has been specified and this specification is satisfied for each slice

of u consisting of a single term, then a proof of the associativity of f relative
to u based on the given proof of correctness off requires the consideration of at

most p easel ......... ::::

PROOF. Proof of (a) using ACT. (A similar proof of (b) can be given us-

ing RACT.) Let R be the set containing the pairs (s,_s), where s is a nonnull

sequence of E and s is the specified value of reducing s using f. By the hypoth-

esis, R contains (< z >,x) for each x in E. Let=s! and stt be arbitrary nonnull
slices of an arbitrary sequence s of E such that s is the concatenation of st and

su. By ACT, if (s, f(s2, sJ.gt)) is the unique element of R whose first coordinate

is s, then f is associative. That is, to conclude that f is associative it suffices

to show that f(sA, sl_.2t)is the unique specified reduction of s by f. Since only a

single application of f is involved, at most p cases need to be considered, one

for each of the cases in the given proof of correctness of f.o

Note that since ACT is a characterization of associativity, we are not required

to prove a property stronger than the associativity of f in using the method in
the above proof. Of course, the analogous statement for the use of RACT in

proving relatise associativity also holds. This method will now be illustrated
for the function f in Example 2. :

Let f be the function given in Figure 1 to help find the length of the longest

plateau in a nondeereasing sequence of integers. The number of logical paths

in the code for f is 24, since 24 = (4 + 2) x 2 × 2. As will be shown in this
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section,due to obvious propertiesof the code for f, only 6 cases,rather than

24,need to be consideredinproving the correctnessofa singleapplicationof f.

Itfollowsthat a straightforwardproof ofthe relativeassociativityoff usingthe

definitionofassociativityand such a proof ofcorrectnessof.finvolves64 - 1296

cases.Since such a proof isboth long and straightforward,such a proof isnot

presentedin thispaper.

The appendix illustrateshow numerous wd-hoc arguments can reduce the

lengthof a proof based on the definitionof relativeassociativity.The present

sectiondemonstrates how using the method in the proof of the Proposition

avoids the kind of time consuming and error-pronead-hoc arguments used in

the appendix.

Let u be any sliceof a nondecreasing finitesequence of integersand let s

be the natural corresponding sequence of recordsof type PLATEAU_TYPE; that

is,the fieldsLEN, FIRST_LEN, and LAST_LEN ofeach term ofs have the value I,
and the fieldsFIRST and LASTof the ithterm of s both have the same value as

the i:h term of u.

A proof ofthe assoclatlvityof f relativeto s using the method in the proof

ofthe Propositionproceeds as follows.A specificationof the effectof reducing

an arbitrarynonnuU sliceof s using f isgiven in Example 2. Note that the

reductionof s obviouslyhas the specifiedvalue when s has a singleterm. Now

letsl and sllbe arbitrarynonnull slicesof s such that s isthe concatenation

of sland sII.Let ut and utldenote the subsequences of u corresponding to sl

and su, respectively;e.g. ifslisthe sequence < si,...,sj >, then ul denotes

the sequence < ui,...,uj >. Let variablesL and Rbe assigned the specified

reductionof sland sII,respectively,so that:

• L.LEII is the length of the longest plateau in ur.

• L.FIRST_LEN is the length of the longest plateau in ut that starts at the

first component of ut.

• L.LAST_LEN is the length of the longest plateau in ul that ends at the last

component of ut.

, L.FIRST is the value of the first component of ut.

• L.LAST is the value of the last component of ul.

and

• R.LEN isthe length of the longestplateauin ull.

• R.FIRST_LEII isthe lengthof the longestplateau in ullthat startsat the

firstcomponent of ull.

• It.LAST_LEI_isthe lengthofthe longestplateauinullthat ends atthe last

component of uII.

13
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* R.FIRST is the value of the first component of u11.

• R.LAST is the value of the last component of u!1.

Clearly the specified value of the reduction of any nondecreasing finite se-

quence by / is unique, due to the nature of the specification of/. Thus, due

to RACT, we can conclude that / is associative if we show that f (L, R) is the

specified reduction of s by/. We present a proof of this fact having the same

amount of detail as the proof in the appendix.

if L.LAST - R.FIRST

Then L.LAST_LEN + R.FIRST_LEN is the length of a plateau so

ANS.LEN = max (max (L.LEN, R.LF_), L.LAST_LEN ÷ R.FIRST.LEN)

is the length of the longest plateau in u.

if L.LAST # _._r ........

Then no plateau extends from the and of u _ to the beg_-,ming of

u" so ANS.LEN - max (L.LEN, R.LEN) is the length of the

longest plateau in u. = =

if L.FIILST - R.FIRST

Then a plateau extends from the beginning of u' into u'' so

ANS.FIRST_LEN - L.LEN ÷ R.FIRST_LEN is the length of the ....

longest plateau starting at the first component of u.=

if L.FIRST # R.FIRST

Then no plateau extends from the beginning of u' into u" so

ANS.FI_T_LEN - L.LEN is the length of the longest plateau
........ 5=:

startlng at the first Component of u. _ .......

if L.LAST " R.IAST

Then a plateau extends from the end of u' to the end of u" so

ANS.LAST - L.IAST_LEN + R.LEN is the length of the longest

plateau ending at the last component of u.

if L.LAST # R.IAST

Then no plateau extends from the end of u' to the end of u" so

ANS.LAST - R.LAST_LEN is the length of the longest:::_ _÷p_ateau.....ending

at the last component of u.

Finally, since u is ur concatenated with ulr, ANS.FIRST and AHS.LAST are a_

signed the specified values, t3

u
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5 COMPOSITES OF ASSOCIATIVE FUNC-

TIONS

The function f in Example 2 is defined in terms of simpler functions. A natural

question arises when such functions must be shown to be associative: Can an

associative function, or a function that is associative relative to a sequence, be
characterized as the composite of certain well-behaved functions? The most
natural candidate for "well-behaved functions" are the associative functions

themselves and such a characterization would be quite useful, since many func-

tions that need to be shown associative, or associative relative to a sequence,

are easily shown to be composites of associative functions.

On the one hand, an associative function f can always be written as the

composite of associative functions, namely

f(x,y) -- f(pl(x,y),p2(x,y))

where pl and p2 are the projection functions pl(z, y) = z and p2(z, y) = y, which

are easily seen to be associative. Does the converse hold; i.e. is the composite
of associative functions necessarily associative, or at least associative relative to

a nontrivial sequence? (We view as trivial any sequence consisting entirely of
zeroes, as well as any sequence having less than three terms, for which relative

associativity is of no importance.) The answer is "no":

EXAMPLE 4. There are associative functions fl, f2, and fz such that their

composite f, defined by

=

fails to be associative relative to an v nontrivial sequence. For let fl(x,y) = z + y,

let f_ and f3 be the projection function Pl, defined above, and let f be defined

by

f(x,y) -- fl(f2(x,y),f3(x,y))

Then f(z, y) = x + x = 2z, which is not associative since f(x, f(y, z)) = 2z
whereas f(f(z, V), z) = 4z. It is easy to see that f also fails to be associative

relative to any nontrivial sequence.m
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APPENDIX

Let .f be the function given in:Figure 1 to help find the lengt_o_the longest

plateau in a sequence. Let u be any nondecreasing sequence of integers and let

s be the natural corresponding sequence of records of type PLy.TEAU,TYpE_ that

is, the fields I$11, FIRST_LEN, and LIST_LEN of each term of s have the value
I,and the fieldsriEtTand-_.ASTof the i '_ ierm O_a-_b_-h -have:the same value

as the i 'h term of u. In Section 4.1 f is proven to be associative relative to s

using the method in the proof of the Proposition of Section 4. In this section f

is shown to be associative relative to s using the definition of as_d-aHvity and

ad-hoc arguments based on special properties of f.

LEMMA. Let t =< t_,...,tj > be any slice of s, let T be .fr(t), and let

ut =< ui,...,uj >. Then T.LEN is the length of the longest plateau in ut,
T.FIRST_LEN is the length of the longest plateau in ut that starts at the first

component of u,, T.LAtT_'Li_N ig_'ihe-'length of the 'longesi plaieau in ut that ends
at the last component of ut, T.FIRST is the value of the first component of u,,

and T.LlST is the value of the last component of ut.

i? : :L 2 :L: _= ::_ t : . : :7= - : _ :

PROOF. By induction on the length of t. The Lemma clearly holds for

slices of length 1, so assume it holds for slices of length nan_let tbe a slice of

length n + 1, say t =< x > or. Since f_(t) = f(z,h(v)), T results frooma call
on f for which L.LEN, L.FIRST_LEN, and LAST_I_N have value i mad L,FIRST,

L. LAST have equal values, a value that is no greater than R. FIRST, and by the

induction hypothesis, R satisfies the above conditions. It is then straightforward
to check that the value ANS returned by this call satisfies the above conditions.D

- : L

PROPOSITION. The function f is associative relative to the sequence s.

PROOF.To shorten the proof, we replace if statements by conditional

expressions. For example, the statement:

if L.FIRST - R.FIRST then

ASS:FIRST_LF-_ := L.LEN + R.FIRST'LEN;

else

ANS.FIRST_LE/_:= L.FIRST_LEN;

end if ;

is replaced by

ANS.FIBST_LEN :- [if L.FIRST - R.FIRST then L.LFJ + R.FIBST_LF21
else L. FIRST,L_N];

Let sl os2oss be a slice of s, let ul, u2, and us be the slices of u corresponding to

sx, s2, and s._, and let X, Y, and Z denote f,(sO, re(S2), and f,(sz), respectively.
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TO SHOW: f(X, f(Y,Z)).x- f(f(X,Y), Z).x

for x ,, LEN, FIRST_LEN, LAST_LEN, FIRST, and LAST.

f(X, f (Y,Z)) .LEN

- [if X.LAST - f(Y,Z).FIRST then

max (X.LEN, f(Y,Z).LEN, X.LAST_LEN + f(Y,Z).FIRST_LEN)

else

nax(X. LEN, f (Y,Z) .LEN)]

- [if X.LAST - Y.FIRST then

max (X.LEN,

[if Y.LAST = Z.FIRST tl_en

max (Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)

else max (Y.LEN, Z.LEN)],

X.LAST_LEN + [if Y.FIRST - Z.FIRST then

Y. LEN + Z.FIRST_LEN

else Y.FIRST_LEN] )

else

max (l. LEN,

[if Y.LAST ,, Z.FIRST then
max (Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)

else max (Y.LEN, Z.LEN)])

]
- [if Y.LAST - Z.FIRST then

max ([if X.LAST - Y.FIRST then

max (X.LEN, Y.LEN, X.LAST_LEN + ¥.FIRST_LEN)

else max (X.LEN, Y.LEN)3,

Z.LEN,

[if %.LAST - Y.LAST then X.LAST_LEN + Y.LEN else I.LAST_LEN]

÷ Z. FIRST_LEN)

else

max ([if X.LAST - Y.FIRST then

max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIP_T_LEN)

else max (X.LEN, Y.LEN)],

Z.LEN)

Proof of the last equality:

if Y.LAST - Z.FIRST

if X.LAST - Y.FIRST

if Y.FIRST - Z.FIRST Then clearly X.LAST - Y.LAST.

The first expression is equal to
max (X.LEN, Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN,

X.LAST_LEN + Y.LEN + Z.FIRST_LEN)

and the second expression is equal to

max (X.LEN, Y.LEN, %.LAST_LEN + Y.FIRST_LEN,

Z.LEN, X.LAST_LEN + Y.LEN + Z.FIRST_LEN)

Now since Y.FIRST - Y.LAST, all of u% is a plateau so

17
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X.LAST_LEN + ¥.LEN + Z.FIRST_LEN >-
Y.LAST_LEN + Z.FIRST_LEN and

X. LAST_LEN + Y. LEN + Z, FIRST_LEN >-

X.LAST_LEN + Y.FIP.BT_LEN so the two

expressions are equal.
iS Y.FIRST # Z.FIP_T Then clearly X.LAST # Y.IAST.

The first expression is equal to

,lax (X.LEN, Y.LEN, Z.LF_, Y.LAST_LEN + Z.FIP_T_LFJ,

X.LAST_LEN + Y.FIRST_LEN)

and the second expression is equal to

max (X.LEN, Y.LEN, I.LAST.LEN + ¥.FIEST_LEN, Z.LEN,
Y.LAST_LEN + Z.FIRST_LEN)

so the tso expressions are equal.
iS X.LAST # Y.FIRST Then X.LAST # Y.LAST since the sequence is nondecreasing.

Thus both expressions equal
max (X.LEN, Y.LEN, Z.LEN, ¥.LAST LEN + Z.FIRST_LEN)

if ¥.LAST # Z.FIRST Then Y.FIRST # Z.FIRST since the sequenc e is nondecreasin K.

iS I.LAST = Y.FIRST The first expression is equal to

max (X.LEN, Y.LEN, Z.LF_, X.LAST_LEN ÷ Y.FIP_T_LF_)

and the second expression is equal to
max (X.LEN, Y:LEN, X.LAST_L_ + Y.FIRgT,LEN, Z.LEN)

so the teo expressions are equal.

iS X.LAST # Y.FIRST Both expressions equal max (X.LEN, Y.LEN, Z.LEN).

- [if Y.LAST = Z.FIRST then

max ([if X.IAST = Y.FIRST then

max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN)

else max (X.LEN, Y.LEN)], ....

Z.LEN,

f (X,Y).LAST_LEN + Z. FIRST_LEN)

else

max ([_f X.LAST = Y.FIRST then

max (X.LEN, Y.LEN, X.LAST_LF_ + ¥.FIRST_LEN)

else max (X.LEN, ¥.LEN)],

Z.LEN)

- [iS Y.LAST = Z.FIRST then

max (f(X,Y).LEN, Z.LEN, f(X,Y).LAST_LEN + Z.FIRST_LEN)

else

max (f (X,Y).LE_,
z.LEN)

- [if f(X,Y).LAST - Z.FIRST then

max (f(X,Y).LEN, Z.LEN, f(X,Y).LAST_LEN + Z.FIBST_LEN)

else ' ::_ _ =

max (f (X,Y) .LEN,

Z.LEN)]

- f(f(X,Y), Z).LEN
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f(I, f (Y,Z)) .FIRST_LEN
- [if X.FIRST - f(Y,Z).FIRST then X.LEN + f(Y,Z).FIRST_LEM else X.FIRST_LEN]

- [if X.FIRST - Y.FIRST then X.LEN +
[if Y.FIRST - Z.FIRST then Y.LEN + Z.FIRST_LF_ else Y.FIRST_LEN]

else X. FIRST_LEN]

- [if X.FIRST - Z.FIRST then

• [if X.LAST = Y.FIRST then

max (X.LEN, Y.LEN, X.LAST_LFJ + Y.FIRST_LEN)

else max (X.LEN, Y.LEN)] + Z.FIRST_LEN
else

[if X.FIRST = Y.FIRST then X.LEN + Y.FIRST.LFM else X.FIRST_LEN]]

Proof of the last equality:

if X.FIRST - Y.FIRST Then X.LAST - Y.FIRST, since the sequence is nondecreasing.
if Y.FIRST - Z.FIRST Then X.FIRST - Z.FIRST.

The first expression is equal to

X.LEN + Y.LEN ÷ Z.FIRST_LEN

and the second expression is equal to

max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN) + Z.FIRST_LEN.

Note that, since X.FIRST - Z.FIRST, and since the

sequence is nondecreasir_, all terms from
X.FIBST to Z.FIRST have the same value; thus

X.LAST_LEN + Y.FIRST_LEN - X.LEN + ¥.LEN so

X.LAST_LEN + Y.FIRST_LEN - max (X.LEN, Y.LEN,
X.LAST_LEN + Y.FIRST_LEN) so

the second expression is also equal to
X.LEN + Y.LEN + Z.FIRST_LEN.

if Y.FIRST # Z.FIRST Then X.FIRST # Z.FIRST.

Both expressions equal X.LEN + Y.FIRST_LEN.
if X.FIRST # Y.FIRST Then X.FIRST # Z.FIRST, since the sequence is nondecreasing.

Both expressions equal X.FIRST_LEN.

- [if f(X,Y).FIRST = Z.FIRST then f(X,Y).LEN + Z.FIRST_LEN else f(X,Y).FIRST_LEN]

- f(f(X,Y), Z).FIRST_LEN

f(X, f (Y,Z)) .LAST_LEN

- [if X.LAST - f(Y,Z).LAST then X.LAST_LEN + f(Y,Z).LLq else f(Y,Z).LAST_LEN]

- [if X.LAST - Z.LAST then X.LAST_LEN + f(Y,Z).LEN else f(Y,Z).LAST_LEN]

- [if X.IAST - Z.LAST then

X.LAST_LEN + [if Y.LAST - Z.FIRST then

max (Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)

else max (Y.LEN, Z.LEN)]

else [if Y.LAST - Z.LAST then Y.LAST_LFJq + Z.LEN else Z.LAST_LEN]]

- [if Y.LAST - Z.LAST then

[if X.LAST - Y.LAST then X.LAST_LEN + Y.LEN else Y.LAST_LEN] + Z.LEN
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else Z. LAST_LEN]

Proof of the last equality:

if X.LAST - Z.LAST Then X.LAST = Y.LAST - Z.FIRST - Z.LAST, since the

sequence is nondecreasir_.

The first expression equals

Z.IAST.LEN + max (Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)

The second expression equals

I.LAST_LEN + Y.LEN + Z.LEN

Note that the first expresmion can be revritten as

X.LAST_LEN + Y.LAST_LF_N + Z.FIRST_LEN since

Y.LAST_LEN + Z.FIRST_LEN = Y.LEM + Z.LEM

so the two expressions are equal.

if X.LAST # Z.LAST

if Y.LAST = Z.FIRST

if Y.LAST = Z.LAST Then X.LAST # Y.LAST.

Both expressions equal Y.LAST_LEN + Z.LEN.

if Y.LAST # Z.LAST Both expressions equal Z.LAST_LEN

if Y.LAST # Z.FIRST Then Y.LAST # Z.LAST, since the sequence is nondecreasing.

Both expressions equal Z.LAST_LEN.

- [if f(X,Y).LAST = Z.LAST then

[if X.LAST = Y.LAST then X.LAST_LEN + Y.LEM else Y.LAST_LEN] + Z.LEN

else Z. LAST_LEN]

- [if f(X,Y).LAST - Z.LAST then f(X,Y).LAST_LEN + Z.LEN else Z.LAST_LEN]

- f(f(X,Y), Z),LAST_LEN

f(X, f (Y,Z)) .FIRST

= X. FIRST

- f (X,Y) .FIRST

- f(f(X,Y), Z),FIRST

f(X, f(Y,Z)).LAST

- f(Y,Z).LAST

- Z.LAST

- f(f(X,Y), Z).LAST
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